Copied to
clipboard

G = C4×C324D6order 432 = 24·33

Direct product of C4 and C324D6

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C4×C324D6, C127S32, (C3×C12)⋊18D6, C3⋊Dic319D6, C337(C22×C4), (C32×C12)⋊12C22, (C32×C6).68C23, C34(C4×S32), C3⋊S33(C4×S3), C6.97(C2×S32), C329(S3×C2×C4), (C4×C3⋊S3)⋊13S3, (C12×C3⋊S3)⋊15C2, (C2×C3⋊S3).48D6, C339(C2×C4)⋊11C2, (C6×C3⋊S3).59C22, C2.1(C2×C324D6), (C3×C6).118(C22×S3), (C3×C3⋊Dic3)⋊20C22, (C2×C324D6).4C2, (C3×C3⋊S3)⋊7(C2×C4), SmallGroup(432,690)

Series: Derived Chief Lower central Upper central

C1C33 — C4×C324D6
C1C3C32C33C32×C6C6×C3⋊S3C2×C324D6 — C4×C324D6
C33 — C4×C324D6
C1C4

Generators and relations for C4×C324D6
 G = < a,b,c,d,e | a4=b3=c3=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 1320 in 270 conjugacy classes, 63 normal (8 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, C12, D6, C2×C6, C22×C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S32, S3×C6, C2×C3⋊S3, S3×C2×C4, C3×C3⋊S3, C32×C6, S3×Dic3, C6.D6, S3×C12, C4×C3⋊S3, C2×S32, C3×C3⋊Dic3, C32×C12, C324D6, C6×C3⋊S3, C4×S32, C339(C2×C4), C12×C3⋊S3, C2×C324D6, C4×C324D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4×S3, C22×S3, S32, S3×C2×C4, C2×S32, C324D6, C4×S32, C2×C324D6, C4×C324D6

Smallest permutation representation of C4×C324D6
On 48 points
Generators in S48
(1 30 19 7)(2 25 20 8)(3 26 21 9)(4 27 22 10)(5 28 23 11)(6 29 24 12)(13 47 38 34)(14 48 39 35)(15 43 40 36)(16 44 41 31)(17 45 42 32)(18 46 37 33)
(1 3 5)(2 6 4)(7 9 11)(8 12 10)(13 15 17)(14 18 16)(19 21 23)(20 24 22)(25 29 27)(26 28 30)(31 35 33)(32 34 36)(37 41 39)(38 40 42)(43 45 47)(44 48 46)
(1 3 5)(2 6 4)(7 9 11)(8 12 10)(13 17 15)(14 16 18)(19 21 23)(20 24 22)(25 29 27)(26 28 30)(31 33 35)(32 36 34)(37 39 41)(38 42 40)(43 47 45)(44 46 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 36)(5 35)(6 34)(7 37)(8 42)(9 41)(10 40)(11 39)(12 38)(13 29)(14 28)(15 27)(16 26)(17 25)(18 30)(19 46)(20 45)(21 44)(22 43)(23 48)(24 47)

G:=sub<Sym(48)| (1,30,19,7)(2,25,20,8)(3,26,21,9)(4,27,22,10)(5,28,23,11)(6,29,24,12)(13,47,38,34)(14,48,39,35)(15,43,40,36)(16,44,41,31)(17,45,42,32)(18,46,37,33), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,35,33)(32,34,36)(37,41,39)(38,40,42)(43,45,47)(44,48,46), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,17,15)(14,16,18)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,33,35)(32,36,34)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,36)(5,35)(6,34)(7,37)(8,42)(9,41)(10,40)(11,39)(12,38)(13,29)(14,28)(15,27)(16,26)(17,25)(18,30)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47)>;

G:=Group( (1,30,19,7)(2,25,20,8)(3,26,21,9)(4,27,22,10)(5,28,23,11)(6,29,24,12)(13,47,38,34)(14,48,39,35)(15,43,40,36)(16,44,41,31)(17,45,42,32)(18,46,37,33), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,35,33)(32,34,36)(37,41,39)(38,40,42)(43,45,47)(44,48,46), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,17,15)(14,16,18)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,33,35)(32,36,34)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,36)(5,35)(6,34)(7,37)(8,42)(9,41)(10,40)(11,39)(12,38)(13,29)(14,28)(15,27)(16,26)(17,25)(18,30)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47) );

G=PermutationGroup([[(1,30,19,7),(2,25,20,8),(3,26,21,9),(4,27,22,10),(5,28,23,11),(6,29,24,12),(13,47,38,34),(14,48,39,35),(15,43,40,36),(16,44,41,31),(17,45,42,32),(18,46,37,33)], [(1,3,5),(2,6,4),(7,9,11),(8,12,10),(13,15,17),(14,18,16),(19,21,23),(20,24,22),(25,29,27),(26,28,30),(31,35,33),(32,34,36),(37,41,39),(38,40,42),(43,45,47),(44,48,46)], [(1,3,5),(2,6,4),(7,9,11),(8,12,10),(13,17,15),(14,16,18),(19,21,23),(20,24,22),(25,29,27),(26,28,30),(31,33,35),(32,36,34),(37,39,41),(38,42,40),(43,47,45),(44,46,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,36),(5,35),(6,34),(7,37),(8,42),(9,41),(10,40),(11,39),(12,38),(13,29),(14,28),(15,27),(16,26),(17,25),(18,30),(19,46),(20,45),(21,44),(22,43),(23,48),(24,47)]])

60 conjugacy classes

class 1 2A2B···2G3A3B3C3D···3H4A4B4C···4H6A6B6C6D···6H6I···6N12A···12F12G···12P12Q···12V
order122···23333···3444···46666···66···612···1212···1212···12
size119···92224···4119···92224···418···182···24···418···18

60 irreducible representations

dim1111122222444444
type++++++++++
imageC1C2C2C2C4S3D6D6D6C4×S3S32C2×S32C324D6C4×S32C2×C324D6C4×C324D6
kernelC4×C324D6C339(C2×C4)C12×C3⋊S3C2×C324D6C324D6C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C3⋊S3C12C6C4C3C2C1
# reps13318333312332624

Matrix representation of C4×C324D6 in GL6(𝔽13)

500000
050000
005000
000500
000050
000005
,
100000
010000
001000
000100
0000121
0000120
,
010000
12120000
001000
000100
000010
000001
,
1200000
110000
000100
00121200
000001
000010
,
1200000
110000
0001200
0012000
0000120
0000012

G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C4×C324D6 in GAP, Magma, Sage, TeX

C_4\times C_3^2\rtimes_4D_6
% in TeX

G:=Group("C4xC3^2:4D6");
// GroupNames label

G:=SmallGroup(432,690);
// by ID

G=gap.SmallGroup(432,690);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^3=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽