direct product, metabelian, supersoluble, monomial, A-group
Aliases: C4×C32⋊4D6, C12⋊7S32, (C3×C12)⋊18D6, C3⋊Dic3⋊19D6, C33⋊7(C22×C4), (C32×C12)⋊12C22, (C32×C6).68C23, C3⋊4(C4×S32), C3⋊S3⋊3(C4×S3), C6.97(C2×S32), C32⋊9(S3×C2×C4), (C4×C3⋊S3)⋊13S3, (C12×C3⋊S3)⋊15C2, (C2×C3⋊S3).48D6, C33⋊9(C2×C4)⋊11C2, (C6×C3⋊S3).59C22, C2.1(C2×C32⋊4D6), (C3×C6).118(C22×S3), (C3×C3⋊Dic3)⋊20C22, (C2×C32⋊4D6).4C2, (C3×C3⋊S3)⋊7(C2×C4), SmallGroup(432,690)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C32×C6 — C6×C3⋊S3 — C2×C32⋊4D6 — C4×C32⋊4D6 |
C33 — C4×C32⋊4D6 |
Generators and relations for C4×C32⋊4D6
G = < a,b,c,d,e | a4=b3=c3=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 1320 in 270 conjugacy classes, 63 normal (8 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, C12, D6, C2×C6, C22×C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S32, S3×C6, C2×C3⋊S3, S3×C2×C4, C3×C3⋊S3, C32×C6, S3×Dic3, C6.D6, S3×C12, C4×C3⋊S3, C2×S32, C3×C3⋊Dic3, C32×C12, C32⋊4D6, C6×C3⋊S3, C4×S32, C33⋊9(C2×C4), C12×C3⋊S3, C2×C32⋊4D6, C4×C32⋊4D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4×S3, C22×S3, S32, S3×C2×C4, C2×S32, C32⋊4D6, C4×S32, C2×C32⋊4D6, C4×C32⋊4D6
(1 30 19 7)(2 25 20 8)(3 26 21 9)(4 27 22 10)(5 28 23 11)(6 29 24 12)(13 47 38 34)(14 48 39 35)(15 43 40 36)(16 44 41 31)(17 45 42 32)(18 46 37 33)
(1 3 5)(2 6 4)(7 9 11)(8 12 10)(13 15 17)(14 18 16)(19 21 23)(20 24 22)(25 29 27)(26 28 30)(31 35 33)(32 34 36)(37 41 39)(38 40 42)(43 45 47)(44 48 46)
(1 3 5)(2 6 4)(7 9 11)(8 12 10)(13 17 15)(14 16 18)(19 21 23)(20 24 22)(25 29 27)(26 28 30)(31 33 35)(32 36 34)(37 39 41)(38 42 40)(43 47 45)(44 46 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 36)(5 35)(6 34)(7 37)(8 42)(9 41)(10 40)(11 39)(12 38)(13 29)(14 28)(15 27)(16 26)(17 25)(18 30)(19 46)(20 45)(21 44)(22 43)(23 48)(24 47)
G:=sub<Sym(48)| (1,30,19,7)(2,25,20,8)(3,26,21,9)(4,27,22,10)(5,28,23,11)(6,29,24,12)(13,47,38,34)(14,48,39,35)(15,43,40,36)(16,44,41,31)(17,45,42,32)(18,46,37,33), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,35,33)(32,34,36)(37,41,39)(38,40,42)(43,45,47)(44,48,46), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,17,15)(14,16,18)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,33,35)(32,36,34)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,36)(5,35)(6,34)(7,37)(8,42)(9,41)(10,40)(11,39)(12,38)(13,29)(14,28)(15,27)(16,26)(17,25)(18,30)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47)>;
G:=Group( (1,30,19,7)(2,25,20,8)(3,26,21,9)(4,27,22,10)(5,28,23,11)(6,29,24,12)(13,47,38,34)(14,48,39,35)(15,43,40,36)(16,44,41,31)(17,45,42,32)(18,46,37,33), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,35,33)(32,34,36)(37,41,39)(38,40,42)(43,45,47)(44,48,46), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,17,15)(14,16,18)(19,21,23)(20,24,22)(25,29,27)(26,28,30)(31,33,35)(32,36,34)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,36)(5,35)(6,34)(7,37)(8,42)(9,41)(10,40)(11,39)(12,38)(13,29)(14,28)(15,27)(16,26)(17,25)(18,30)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47) );
G=PermutationGroup([[(1,30,19,7),(2,25,20,8),(3,26,21,9),(4,27,22,10),(5,28,23,11),(6,29,24,12),(13,47,38,34),(14,48,39,35),(15,43,40,36),(16,44,41,31),(17,45,42,32),(18,46,37,33)], [(1,3,5),(2,6,4),(7,9,11),(8,12,10),(13,15,17),(14,18,16),(19,21,23),(20,24,22),(25,29,27),(26,28,30),(31,35,33),(32,34,36),(37,41,39),(38,40,42),(43,45,47),(44,48,46)], [(1,3,5),(2,6,4),(7,9,11),(8,12,10),(13,17,15),(14,16,18),(19,21,23),(20,24,22),(25,29,27),(26,28,30),(31,33,35),(32,36,34),(37,39,41),(38,42,40),(43,47,45),(44,46,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,36),(5,35),(6,34),(7,37),(8,42),(9,41),(10,40),(11,39),(12,38),(13,29),(14,28),(15,27),(16,26),(17,25),(18,30),(19,46),(20,45),(21,44),(22,43),(23,48),(24,47)]])
60 conjugacy classes
class | 1 | 2A | 2B | ··· | 2G | 3A | 3B | 3C | 3D | ··· | 3H | 4A | 4B | 4C | ··· | 4H | 6A | 6B | 6C | 6D | ··· | 6H | 6I | ··· | 6N | 12A | ··· | 12F | 12G | ··· | 12P | 12Q | ··· | 12V |
order | 1 | 2 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 9 | ··· | 9 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 9 | ··· | 9 | 2 | 2 | 2 | 4 | ··· | 4 | 18 | ··· | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 18 | ··· | 18 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | D6 | C4×S3 | S32 | C2×S32 | C32⋊4D6 | C4×S32 | C2×C32⋊4D6 | C4×C32⋊4D6 |
kernel | C4×C32⋊4D6 | C33⋊9(C2×C4) | C12×C3⋊S3 | C2×C32⋊4D6 | C32⋊4D6 | C4×C3⋊S3 | C3⋊Dic3 | C3×C12 | C2×C3⋊S3 | C3⋊S3 | C12 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 3 | 3 | 1 | 8 | 3 | 3 | 3 | 3 | 12 | 3 | 3 | 2 | 6 | 2 | 4 |
Matrix representation of C4×C32⋊4D6 ►in GL6(𝔽13)
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
C4×C32⋊4D6 in GAP, Magma, Sage, TeX
C_4\times C_3^2\rtimes_4D_6
% in TeX
G:=Group("C4xC3^2:4D6");
// GroupNames label
G:=SmallGroup(432,690);
// by ID
G=gap.SmallGroup(432,690);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,1124,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^3=c^3=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations